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Mathematically

Note: Partial differentiation with respect to one of the independent variables follows

the same rules as ordinary differentiation, while the other independent variables

are treated as constants
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Example
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Rules of partial Differentiation

Partial derivatives follow the same basic rules as the rules of

differentiation. A few key rules are given below:
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Second-order partial derivatives
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Cross (or mixed) partial derivatives

Cross partial: measures the rate of change of a first-order partial derivative

with respect to the other independent variable.



13

Example

Note that the two cross partial derivatives are identical. This results is known as 

Young’s Theorem
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The first partial derivatives are:

To partially differentiate the expressions above, we need to employ the

product rule:
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The cross-partial derivatives are:

Notice that for the cross-partial derivatives the product rule is not required
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Optimization of Multivariate Functions
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Points 2 and 3 before together describe the second-order (sufficient)

conditions for a relative extremum.

Plot of a Multivariate Function
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Maximum and Minimum
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Note the following
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ii) Take the second-order direct partials, evaluate them at each of the critical

points, and check their signs
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The function is maximized at (7,-3) and minimized at (-7, 3)
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Optimization of Multivariate Functions in Economics

When solved simultaneously:

ii) Take the second-order partial derivatives since both must be negative for

the function to be maximum
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Critical Points of Multivariate Functions: The General Case

We define the Hessian as the matrix containing the second partial

derivatives and cross partial derivatives; it is a square symmetric matrix

with the following form
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The necessary and sufficient conditions for the maximization (minimisation)

problem in the multivariate case are a generalization of the two variable

case.

First Order Condition (FOC)

Second Order Condition (FOC)

Let the Hessian be:

Where:
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Denote successive principal minors of H by:

Then, the SOCs are as follows:
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Example

Let:
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and
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Example

Consider the function:

FOC



32



33

Total Differentials
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