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Functions of several variables and partial derivatives

Many economic and financial activities involve functions of more than one
independent variables.

Example:
Production theory is the combination of capital and labour, which determines
the output produced, and not just one factor of production:

Q=f(KL)

z = f(x,y) is defined as a function of two independent variables if there
exists one and only one value of z in the range of f for each ordered pair of
real numbers (x, y) in the domain of f.

By convention, z is the dependent variable; x and y are independent
variables




Partial Derivative: the measure of the effect of a change in a single
independent variable x or y on the dependent variable z in a multivariable

function.

The partial derivative of z with respect to x measures the instantaneous rate
of change of z with respect to x while y is held constant.

It is written as: ‘

oz/éx, of [ox, f.(x.v). f. or =,

Mathematically

% i flx+ Ax, v)—f(x, )
ET Ax—0 Jﬁﬂ_\:

Note: Partial differentiation with respect to one of the independent variables follows
the same rules as ordinary differentiation, while the other independent variables

are treated as constants
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Example

Partial derivatives of the multivariable function z = 3x?y?3

0z 0z
P 6xy3 — = 3x2%3y?% = 9x?%y

Partial derivatives of the multivariable function z = 5x3 — 3x?y? + 7y°

0z 0z
—:15 2—6 2 —_— - 22 4:— 2 4
Ix X Xy 3y 3x“2y + 35y 6x“y + 35y



Rules of partial Differentiation

Partial derivatives follow the same basic rules as the
differentiation. A few key rules are given below:

PRODUCT RULE

Given z = g(x.v)x h(x.v)

&< = h(x,v) % g + g(x, )% oh
ox ox ox
oz Og ch
= h(x,v)x—=+ g(x,v)x
= )X e e

rules of




Example: |Given z = (3x + 5)(2x + 6y), then, by the product rule:

o, T

E = 2y +61)Q3) + Gy +5)(2) =[12x +10 +18y

ox
& = (2x + 6)(0) + (3x + 5)(6) =|18x + 30




| QUOTIENT RULE |

Giverl z=g(x,v)/ x,v), and h(x,y)#0, |

o= _ h(xn .:") X % - g(x:' _V) X %h
5.1;‘ [h(xn- .:")]2
ag oh
h(x,y)x— — g(x,y)x—
z _ av
v [n(x, )]




Example: |Given = =(6x + 7v)/(5x + 3¥), by the quotient rule,

cz B 6(5"{' + 3_1?) — (61{' + ?1')(5)

ox (5x +3p)°

_ 30x + 181 — 30x — 35}’ _ —1?};
(5x +3y)° (5x + 3y)’

0z _ T(5x +3y) — (6x + 7¥)(3)

oy (5x + 3v)°

 35x+2ly—18v—21y 17«
(5x + 3y)° (5x + 3v)°




‘ GENERALIZED POWER FUNCTION RULE

Given|z =[g(x.v)]",
5: n-1 3g
— =7 X, J o —
. [g(x, )] A

og

}

a: n-1
— =N X,V X
o =rle(.v)




Example:

Given = = (x’ + 7v%)*, by the generalized power function rule,

g
ox

= 4(x* +707) x (3x*) = 1267 (x* + Ty?)’

— = 4(x" + 7y?)’ x (14y) = 56y(x* + Ty*)’
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Second-order partial derivatives

Given a function z = f(x,y), the second-order direct partial derivative
signifies that the function has been differentiated partially with respect to
one of the independent variables twice while the other independent variable
has been held constant:

F=(f) a[a:]_az_- fw:(fy)y:?{a:]:alj

:E o) ax? oy

[ measures the rate of change of the first-order partial derivative f, with
respect to x while y is held constant.
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Cross (or mixed) partial derivatives

fxy and f,, indicate that first the primitive function has been partially
differentiated with respect to one independent variable and then that
partial derivative has in turn been partially differentiated with respect to the
other independent variable.

Cross partial: measures the rate of change of a first-order partial derivative
with respect to the other independent variable.
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Example
Find the first, second, and cross-partial derivatives of the function:

z = 3x?y3

And then evaluatethematx =4;y =1

z. = 6x)° z, = Ox*y?
(4D =6(4)(1)" =24 z, (4D =94 (1) = 144
“x T 613 z = 181'2 V
Xy -
= p— 3 p— - _ _
@D =06(1)"=6 =, (4,1) = 18(4)* (1)= 288
c 0 2.0y 2
z, :a(ﬁmﬁ) =18xy’ 2, = a@x 37) =18xy
2 - _ 2 _
2, (4D) =18(4)(1)* =72 2 (4D = 18(4)(1)* =72

Note that the two cross partial derivatives are identical. This results is known as

Young’s Theorem 13
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Example:
Find all the first and second partial derivatives of the function z = eX "ty

The first partial derivatives are:

o 1 xz+},2
‘ Z,= 2ve ‘

1.2_'_\2
‘: =2xe" 77

X

To partially differentiate the expressions above, we need to employ the
product rule:

‘ = 21* . Vv = E:,"I_+ ¥ ‘

Let w=2x . v=e¢" 77 ‘

2 ,2 ) 2
s =2 + 2x(2xe ) 2, =2 + 232" )

—2¢7 7 (22 + 1) =277 (207 + 1)
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The cross-partial derivatives are:

- — . -"'2"'}'2 — -
z, = dxve =

Notice that for the cross-partial derivatives the product rule is not required
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Optimization of Multivariate Functions
Three conditions should be met for a function such as:

y = f(x,2)

To be at a relative maximum, or minimum

1)

2)

3)

First-order partial derivatives must equal zero simultaneously. In other
words, this is the first-order (necessary) condition for a stationary value
(at a critical point (a, b) the function is neither increasing nor decreasing

The second-order direct partial derivatives (when evaluate at the critical
point (a,b) must both be positive for a minimum and negative for a
maximum. This ensures that from a relative plateau at (a,b) the
function is moving upward in relation to the principal axes in the case of
a minimum, and downward in relation to the principal axes in the case
of a maximum.

The product of the second-order direct partials evaluated at the critical
point must exceed the product of the cross partials evaluated at the

critical point. 16




Points 2 and 3 before together describe the second-order (sufficient)
conditions for a relative extremum.

Plot of a Multivariate Function
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Maximum and Minimum
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TURNING  POINT First Order *Second Order Sufficient Condition
TO BE .
Necessary Condition
i A o =2 ., =2 - - - 2
Vaximum ﬁ‘—:{] and 2 =0 < : <0 and < ,} <0 2’y &%y (é%y)
x % ac’ &’ ﬂz'ﬂg?”qu
ox [ \ e
Minimum N 22, 22 . - - 2
(? =0 and —=0 c ;‘ 0 and ":’;;‘ 0 o'y 2y . (A%y )
o o= a 24 al &' |aa
Saddle Point N 22, 22
(?=0 and —=0 crlo0. 520
X V74 o x°

or vice versa

= Applies only if the first order necessary condition is met
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Note the following

(a) Since f = f,. by Young's theorem, f_* f = (fl:l_,)2 (see step 3)

(b) It f *f,=( fﬂ,)z, when f_ and f  have the same signs, the function is at
an inflection point. When f_ and f, have ditferent signs, the function is at a

saddle point, i.e. the function is at a maximum when viewed from one axis but
a minimum when viewed from the other axis.

( If fo*f,=( Jﬂﬂ,)2 the test is inconclusive.
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Example
Find the critical points of the function

z=2y3—x3+147x — 54y + 12
Test whether the function is at a relative maximum or minimum

i) Take the first-order partial derivatives, set them equal to zero, and solve
for y and x

s =3 +147=0 2, =6y —54=0
x*= 49 ‘1,;2: 0
x ==x7 y =43

With x=%7 and y =+3, there are four distinct sets of critical points:

(7,3), (7,—3). (7. 3).(-7.—-3).

21




i) Take the second-order direct partials, evaluate them at each of the critical
points, and check their signs

I z,— —0Ox I I Zy = 12y I
(1) z. (71,3)=-06(7)=-42 <0 :}T(?ﬁ 3)=12(3) =360
(2) z_(7,-3)=-06(7)=-42 <0 :},},(?, -3)=12(-3)=-36 <0
3) =z, (-7.3)=-6(-7)=42 =0 z, (-7, 3)=12(3)=36 -0
4) z_ (-7,-3)=-6(-7)=42 =0 z, (=7, =3)=12(-3)=-36 =<0

1 and 4: function cannot be relative maximum or minimum (different signs for
each of direct partials).

when z,, and z,, are of different signs, z,, X z,, cannot be greater than
(zxy)*, and the function is at a saddle point.
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2 and 3: function can be relative maximum (7, -3) or minimum (-7, 3)
(different signs for each of direct partials).

However, third condition must be tested first to ensure against the possibility
of an inflection point.

Need to take cross partial derivatives and make sure that:

| The function is maximized at (7, -3) and minimized at (-7, 3) |

[==0] |5-=9]

From (2), (—-42)(=36) = 1512 = (0)°

From (3), (42)(36) = 1512 = (0)°

The function is maximized at (7,-3) and minimized at (-7, 3)
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Optimization of Multivariate Functions in Economics

Example: A firm producing two goods x and y has the following profit
function:

T = 64x — 2x%2 — 4xy — 4y? + 32y — 14
i) Take the first-order partial derivatives, set them equal to zero, and solve

forx and y 7.= 64— 4x + 4y =0

7,=4x -8y +32=0

When solved simultaneously: |f =40 and v =24 |

i) Take the second-order partial derivatives since both must be negative for
the function to be maximum

24




i) Take the cross-partials to make sure

2
TlyxTyy > (Tl,'xy)

Ty = My = 4

TxxTyy = (”xy)z

(=9 (=8) > (4)°
32> 16

Profit are indeed maximized at x = 40 and y = 40. At that point, 7 = 1650
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Critical Points of Multivariate Functions: The General Case

(6v/ox, )
Consider a functiony = f(x) = f(xq, x5, ... X,)- of(x) | ov/ex,
We define the gradient vector (or simply gradient) as: ~ .

\Ov/Oxy )

We define the Hessian as the matrix containing the second partial
derivatives and cross partial derivatives; it is a square symmetric matrix
with the following form

{~2 - -2 2
o’v/éxex, oO’v/éxox, --- &vl/exoxy |
- 2 - - - - - > - -,
7 0° £ (x) | @ v/éx,0x, 0 v/dx,0x, --- O v/0Ox,0xy
OXCX' ' :
2 - 2 - 2
O v/Oxy0Ox, O v/oxyox, --- 0 y/0Oxyoxy )
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The necessary and sufficient conditions for the maximization (minimisation)
problem in the multivariate case are a generalization of the two variable

case.

First Order Condition (FOC)

For a general function of n

variables, say

es, say gy o _
y = f(xq,..., xp), the FOC for a turning point |5~ ~ 5, N 0
“*1 a2 “n
amounts to:
Second Order Condition (FOC) £, f, £ )
Let the Hessian be: Fof f
21 22 2n
H - : : I
\fnl fﬁZ fﬁﬂ)
o'y "y %) 0%y
- £, = £, = f,=—= .1, = to
Where: 11 % 12 5%, 2 2 2,0 etc
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Denote successive principal minors of H by:

11 fl?

H,|=1f,. |H,| = .H

21 22

Then, the SOCs are as follows:

H,|<0, H,|>0. H,| <0, .

for a maximum, H must be negative definite. Equivalently;

for a minimum H must be positive definite; that is:

H,|>0.[H, >0, Hy >0, ..

28



Example

Let: ‘ z — 3.7‘:2 — ﬂ' -+ 2}:2 —ﬁl_x- — ?11 + 12

2, =6x—v—-4=0
2, =—x+4y-7=0

JZ‘

Solving the above two direct partials simultaneously we get the critical point at

which the function is optimized (x=1,v=2).

The second-order partials are z_ =6, = w=4 z,=-1. Using the Hessian to test
the second-order conditions,
o T 6 -1
=" =l
S Ty

29




Taking the principal minors,

H|=6>0 |

4‘ =6(4) — (-1)(-1)=23>0

and ‘Hz‘ = ‘_1

With |H,|>0 and |H,

minimized at the critical values.

> 0, the Hessian |H ‘ is positive definite, and z is

30




Example

. . 2 2 2
Consider the function: |V =X -2X,X, +2X5 +2X,X; +4X; - 2X,

FOC oylox, =2x, -2x, +2x, =0
oylox, =-2x, +4x, =0
oviex, = 2%, +8x;-2 =0

When solved simultaneously, the system gives x1 = -1, x2 = -0.5, x3 = 0.5. That is,
there is a turning point at (-1, -0.5, 0.5).

SOC: When all the 2nd order and cross partial derivatives of the function are
derived and evaluated at the turning point, the following (3x3) Hessian matrix
describes the curvature of the function at the turning point.

31




2 -2 2
H=/-2 4 0
2 0 8

The values of its successive principal MiIinors are: |

2 -2
2 4

=4

H| =16

3

=2, [H - \

Since they are all positive, i.e. the Hessian is positive definite, thus the turning
point is a minimum.
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Total Differentials

For a function of two or more independent variables, the ftotal differential

measures the change in the dependent variable brought about by a small change
in each of the independent variables. If = = f(x.y), the total differential d:-is

expressed mathematically as

dz = z,dx + z dy

where z,  and z, are the partial derivatives of zwith respect to x and

X V

yrespectively, and dx and dy are small changes in x and y. The total

differential can be found by taking the partial derivatives of the function with

respect to each independent variable and-substituting these values in the formula
above.
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Example: Given the function z =In(x*+ 2y’) , the total differential is found as
follows:

. 2x 6y

x40y Xt 2y

which, when substituted into the total differential formula, gives:

2. 6v°
- = ,}—rj O’I + 5 ) 3 d]
x 4+ 2y x° + 2y
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