Formula Sheet

Perpetuity

The value of a perpetuity of $\$ 1$ per year is:

$$
P V=\frac{1}{r}
$$

Where,
PV is the present value, and r the discount rate

Annuity

The value of an annuity of $\$ 1$ per period for t years (t-year annuity factor) is:

$$
P V=\frac{1}{r}-\frac{1}{r(1+r)^{t}}
$$

Where,
PV is the present value, r the discount rate and t the number of periods

Growing Perpetuity

If the first period's cash flow is $\$ 1$ at year 1 and if cash flows thereafter grow at a constant rate of g in perpetuity

$$
P V=\frac{1}{r-g}
$$

Where,
PV is the present value, , r the discount rate and g the constant growth rate

Beta of stock \mathbf{i}

$$
\beta_{i}=\frac{\operatorname{Cov}_{i, M}}{\sigma_{M}^{2}}=\frac{\rho_{i, M} \sigma_{i} \sigma_{M}}{\sigma_{M}^{2}}
$$

Where, β is the Beta of stock $i, \operatorname{Cov}_{i, M}$ is the covariance between the stock i and market returns, σ_{M}^{2} is the variance of market returns, $\rho_{i, M}$ is the correlation between the stock i and market returns, σ_{i} is the standard deviation of stock i returns and σ_{M} standard deviation of market returns.

Capital Asset Pricing Model

The expected return on a risky investment is:

$$
E_{R_{i}}=R_{F}+\beta\left(E_{R_{M}}-R F\right)
$$

Where, $E_{R_{i}}$ is the expected return for stock i, R_{F} is the risk free rate, β is the Beta of stock I and $E_{R_{M}}$ is the expected market return.

Weighted Average Cost of Capital

$$
W A C C=r_{D} \times\left(1-T_{C}\right) \frac{D}{V}+r_{E} \times \frac{E}{V}
$$

Where, r_{D} and r_{E} are the expected returns on debt and equity, T_{C} is the marginal rate of corporate tax, D and E are the market values of debt and equity with $V=D+E$

Net Present Value

Formula used to determine the present value of an investment by the discounted sum of all cash flows received from the project.

$$
N P V=-C_{0}+\frac{C_{1}}{1+r}+\frac{C_{2}}{(1+r)^{2}}+\cdots+\frac{C_{T}}{(1+r)^{T}}
$$

Where, $-C_{0}$ is the initial investment, C_{1} to C_{T} cash flows, r is the discount rate and T is the number of periods (e.g. years)

