Financial Management Formula Sheet - Seminar 1

Compounding Periods and Interest Rates

$$
R=(1+i / n)^{n}-1
$$

Where,
\boldsymbol{R} is the effective annual rate, \boldsymbol{i} the nominal rate, and \boldsymbol{n} the number of compounding periods per year (for example, 12 for monthly compounding)

Present Value of a Lump Sum

$$
P V=\frac{C}{(1+i)^{t}}
$$

Where,
\boldsymbol{C} is the future amount of money that must be discounted, t is the number of compounding periods between the present date and the date where the sum is worth $\boldsymbol{C}, \boldsymbol{i}$ is the interest rate for one compounding period (the end of a compounding period is when interest is applied, for example, annually, semi-annually, quarterly, monthly, daily).
The interest rate, \boldsymbol{i}, is given as a percentage, but expressed as a decimal in this formula.
Present value factor: $v^{n}=(1+i)^{-t}$

Future value

$$
F V=P V \times(1+i)^{t}
$$

Where,
Where $\boldsymbol{P V}$ is the present value, \boldsymbol{t} is the number of compounding periods (not necessarily an integer), and i is the interest rate for that period.

Present Value of Ordinary Annuity

$$
P V_{O A}=C \times\left[\frac{1-(1+i)^{-n}}{i}\right]
$$

Where,
\boldsymbol{C} is the cash flow per period, \boldsymbol{i} is the interest rate and \boldsymbol{n} is the number of payments

Annuity Due

$$
P V_{O A}=C \times\left[\frac{1-(1+i)^{-n}}{i}\right] \times(1+i)
$$

Where,
\boldsymbol{C} is the cash flow per period, \boldsymbol{i} is the interest rate and \boldsymbol{n} is the number of payments

