

333-201 Business Finance

Dr Cesario MATEUS
PhD in Finance
Senior Lecturer in Finance and Banking
Room 219 A – Economics & Commerce Building
8344 – 8061
c.mateus@greenwich.ac.uk

333-201 Business Finance

Lecture 15:

Capital Budgeting / Project Evaluation 2

Capital Budgeting II

- Compare the NPV and IRR methods and examine the incremental IRR method
- Examine the accounting rate of return method and its drawbacks
- Examine the payback period method and its drawbacks

- Independent projects are projects that can be evaluated on their own and independently of each other
 - The decision to accept a project does not affect the decision to accept or reject other projects
 - Assumes that there are enough funds for all potential projects being considered
 - Examples: A development of two separate pieces of land, or expanding the Melbourne and London offices
- Decision rule for independent projects
 - Invest in all positive NPV projects
- Does the IRR rule work the same way here?

Example: Consider two projects with the following pattern of net cash flows and a required rate of return of 10%. What decision would the firm make if the projects are independent?

Year	Project A	Project B
0	-\$120,000	-\$120,000
1	\$100,000	\$10,000
2	\$50,000	\$60,000
3	\$15,000	\$120,000
NPV	\$23,501	\$28,835
IRR	24.8%	19.8%

- Mutually exclusive projects are projects where the acceptance of one project rules out the acceptance of other (competing) projects
 - Example: A piece of land is used to build a factory, which rules out an alternate project of building a warehouse on the same land
- Decision rule for mutually exclusive projects
 - Assuming the projects being considered are worth undertaking (that is, they are positive NPV projects).
 - Invest in the highest NPV project

Does the IRR rule work the same way here?

Example: Consider two projects with the following pattern of net cash flows and a required rate of return of 10%. What decision would the firm make if the projects are mutually exclusive?

Year	Project A	Project B
0	-\$120,000	-\$120,000
1	\$100,000	\$10,000
2	\$50,000	\$60,000
3	\$15,000	\$120,000
NPV at 10%	\$23,501	(\$28,835)
IRR	24.8%	19.8%

- For mutually exclusive projects the IRR and NPV methods can be made consistent by considering the incremental "projects" A B or B A.
- Look at the difference in net cash flows of the lower IRR project and the net cash flows of the higher IRR project

Year	Project A	Project B	"Project" B - A
0	-\$120,000	-\$120,000	\$0
1	\$100,000	\$10,000	-\$90,000
2	\$50,000	\$60,000	\$10,000
3	\$15,000	\$120,000	\$105,000
NPV	\$23,501	\$28,835	_
IRR	24.8%	19.8%	13.7%

Is it worth investing in the lower IRR project B in preference to the higher IRR project A?

Year	Project A	Project B	"Project" B - A
0	-\$120,000	-\$120,000	\$0
1	\$100,000	\$10,000	-\$90,000
2	\$50,000	\$60,000	\$10,000
3	\$15,000	\$120,000	\$105,000
NPV	\$23,501	\$28,835	_
IRR	24.8%	19.8%	13.7%

- $NPV_{B-A} \equiv 0 = 10000/(1 + r_{B-A}) + 105000/(1 + r_{B-A})^2 90000$
- So, $r_{B-A} = 13.7\% > 10.0\%$
- Which method is preferable NPV or incremental IRR?

- A project's accounting rate of return (ARR) is the average earnings generated by the project, after deducting depreciation and taxes, expressed as a percentage of the investment outlay
- ARR can be based on either the initial investment or the average value of the capital invested over the project's life

Decision rule

- •A project is acceptable if its ARR exceeds a prespecified minimum rate of return
- •For mutually exclusive projects the project with the highest ARR is preferred

♦ *ARR* using the initial investment

$$ARR = \frac{Average\ Earnings}{Initial\ Investment} \times 100$$

♦ *ARR* using the average investment

$$ARR = \frac{Average\ Earnings}{Average\ Investment} \times 100$$

- Note that the average investment is defined as the average book value of the investment over the project's life
- You will be given information on which measure to use when evaluating projects

Example: A firm is considering an investment that costs \$1,000,000 and generates the following earnings over the next three years.

	Year 1	Year 2	Year 3	Average
Earnings	\$100,000	\$50,000	\$30,000	\$60,000
Book values				
Jan 1	\$1,000,000	\$800,000	\$600,000	(1000 + 400)/2
Dec 31	\$800,000	\$600,000	\$400,000	= \$700,000

• Compute the accounting rates of return using the initial investment and average investment. If the prespecified cutoff rate is 5% p.a. what decision should the firm make?

	Year 1	Year 2	Year 3	Average
Earnings	\$100,000	\$50,000	\$30,000	\$60,000
Book values				
Jan 1	\$1,000,000	\$800,000	\$600,000	(1000 + 400)/2
Dec 31	\$800,000	\$600,000	\$400,000	= \$700,000

- Based on the initial investment, ARR = 60/1000 = 6.0%
- Based on the average investment, ARR = 60/700 = 8.6%
- What decision should the firm make?

Example: Consider two projects which each require an initial outlay of \$300,000, and which are fully depreciated over four years and generate the following patterns of annual earnings.

Evaluate the projects using the accounting rate of return

Project	Year 1	Year 2	Year 3	Year 4	Totals
A	\$300,000	\$50,000	\$30,000	\$20,000	\$400,000
В	\$10,000	\$10,000	\$10,000	\$370,000	\$400,000

ARR for both projects based on the initial investment is...

$$ARR = \frac{400000/4}{300000} \times 100 = 33.3\% \text{ p.a.}$$

ARR for both projects based on the average investment is...

$$ARR = \frac{(400000/4)}{[(300000+0)/2]} \times 100 = 66.7\% \text{ p.a.}$$

Since the ARRs for the two projects are equal should the firm be indifferent between the two projects?

Note: The NPV profiles assume that the net cash flows are the same as the earnings

Problems With Accounting Rate of Return

- Earnings are not net cash flows
 - Earnings numbers are subject to the vagaries of the accounting choices made by managers
- Time value of money ignored
 - A dollar of earnings tomorrow is regarded as equivalent to a dollar of earnings today
- ARR tends to favor projects with shorter lives
 - •Earnings received in earlier years would increase the numerator and hence the ARR

Payback Period

- A project's payback period is the time it takes for the initial cash outlay on a project to be recovered from the net after-tax cash flows
 - Note that in computing the payback period we assume that the cash flows are distributed evenly over the year (rather than at the end of each year)

Decision rule

- A project is acceptable if its payback period is less than a prespecified maximum payback period
- For mutually exclusive projects, the project with the shortest payback period is preferred (assuming they all meet the maximum payback period threshold)

Payback Period

Example: A firm is considering three mutually exclusive projects that require an initial outlay of \$100,000 and that generate the following pattern of cash flows. The firm typically accepts projects with a payback period less than 2 years

Project	Year 1	Year 2	Year 3	Year 4	Payback
C	\$100,000	•	•	\$10,000	1 year
D	\$50,000	\$50,000	\$50,000	\$50,000	2 years
Е	\$50,000	\$30,000	\$30,000	\$90,000	2.7 years
F	\$50,000	-\$30,000	\$60,000	\$40,000	3.5 years

- Payback for project E = 2 + 20/30 = 2.7 years
- Payback for project F = 3 + 20/40 = 3.5 years

Problems With Payback Period

- Fails to take account of the cash flows that occur after the payback period cutoff date
- Biased against projects that have longer development periods
 - Examples: Mining and exploration projects
- Ignores the time value of money
- Is there any use for the payback period and accounting rate of return methods?
- What method(s) should a company use?

Key Concepts

- The NPV method is recommended for investment evaluation.
- NPV is consistent with maximization of shareholder wealth
- NPV is also simple to use and gives rise to fewer problems than the IRR method
- In practice, other valuation methods such as the accounting rate of return and payback period are used in conjunction with NPV, despite their inferiority

Key Relationships/Formula Sheet

Accounting rate of return using the initial investment

$$ARR = \frac{Average\ Earnings}{Initial\ Investment} \times 100$$

Accounting rate of return using the average investment

$$ARR = \frac{Average\ Earnings}{Average\ Investment} \times 100$$

