

#### 333-201 Business Finance

Dr Cesario MATEUS
PhD in Finance
Senior Lecturer in Finance and Banking
Room 219 A – Economics & Commerce Building
8344 – 8061
c.mateus@greenwich.ac.uk



#### 333-201 Business Finance

#### Lecture 20:

Debt, Dividends and Taxes III

#### Debt, Dividends and Taxes III

- Examine capital structure theory and the Modigliani-Miller propositions
- Examine the effects of corporate taxes on capital Structure
- Examine the effects of financial distress on capital Structure
- Examine whether an optimal capital structure exists



#### Required Readings: Lectures 20 - 24

#### Lecture 20

PBEHP, Ch. 12 (sections 12.4.1, 12.6 – 12.7)

#### Lecture 21

PBEHP, Ch. 11 (sections 11.1 – 11.2, 11.4 – 11.6)

#### Lecture 22

PBEHP, Ch. 17 (sections 17.1 – 17.5.4 and 17.6)

#### Lecture 23

PBEHP, Ch. 18 (sections 18.1 – 18.2.4)

#### Lecture 24

PBEHP, Ch. 18 (sections 18.2.5 – 18.2.7)



- Proposition 2 states that the expected return on equity of a leveraged firm increases in direct proportion to its debt-to equity ratio
  - Note that the overall cost of capital (k<sub>0</sub>) of the firm remains unchanged
  - For default risk free debt the cost of debt (k<sub>d</sub>) remains unchanged as well
  - The rate of increase in the return on equity  $(k_{\rm e})$  depends on the spread between the firm's overall cost of capital and its cost of debt  $(k_{\rm d})$



- The firm's overall cost of capital (k<sub>0</sub>) is the rate of return expected by investors on the firm's assets
- Assuming that only debt and equity are used, we have...

$$k_o = \left(\frac{D}{D+E}\right)k_d + \left(\frac{E}{D+E}\right)k_e$$

#### Where

k<sub>d</sub> = Cost of debt (required return on debt)

k<sub>e</sub> = Cost of equity (required return on equity)

D = Market value of debt

E = Market value of equity

V = D + E



- According to MM proposition 1 the firm's overall cost of capital must be the same no matter how much leverage exists
- Consider the WACC of a leveraged firm...

$$k_o = \left(\frac{D}{D+E}\right)k_d + \left(\frac{E}{D+E}\right)k_e$$

◆ Multiplying both sides by (D + E)/E, we get...

$$\left(\frac{D+E}{E}\right)k_o = \left(\frac{D}{E}\right)k_d + k_e$$



Rearranging the terms, we get...

$$k_e = k_o + \frac{D}{E} (k_o - k_d)$$

#### •Implication?

- The required return on equity is directly proportional to (a linear function of) the firm's debt-to-equity ratio
- The higher the debt-to-equity ratio, the higher the required return on equity
- Does this make sense and why?
- What is the relationship between systematic risk (  $\beta$ ) and the debt-to-equity ratio?



The cost of equity, debt and WACC are related to their systematic risks via the CAPM and security market line relationship

$$k_e = k_o + \frac{D}{E} (k_o - k_d)$$

· Recall that the security market line relationship is...

$$k_j = r_f + \beta_j [E(r_m) - r_f]$$

Which gives us the following relationship...

$$\beta_e = \beta_o + \frac{D}{E} (\beta_o - \beta_d)$$



- Implication?
- The systematic risk of equity is also a linear function of the firm's debtto-equity ratio
- The higher the debt-to-equity ratio, the higher the systematic risk of equity
- The higher the systematic risk of equity the higher the required rate of return on equity
- There are no free lunches in financial markets!



Example: Consider the illustration related to ABL Ltd and the case related to the expected outcomes. The cost of debt is 10% and the cost of equity (and assets) of the unleveraged firm is 15%. Assume that the systematic risk of the firm's assets is the same as that of the market portfolio and that the debt is risk-free. How does the cost of equity change as the debt-to equity ratio changes? What would you expect to happen if debt were not risk-free at high levels of the debt-to-equity ratio?

Given: 
$$k_0 = 0.15$$
,  $k_d = 0.10$ ,  $\beta_0 = 1$  and  $\beta_d = 0$ 



The cost of equity for the leveraged firm is...

$$k_e = k_o + \frac{D}{E} (k_o - k_d)$$

| Debt        | D/E Ratio | Cost of Equity |
|-------------|-----------|----------------|
| \$0         | 0.00      | 15.0%          |
| \$1,000,000 | 0.11      | 15.6%          |
| \$2,000,000 | 0.25      | 16.3%          |
| \$3,000,000 | 0.43      | 17.1%          |
| \$4,000,000 | 0.67      | 18.3%          |
| \$5,000,000 | 1.00      | 20.0%          |
| \$6,000,000 | 1.50      | 22.5%          |
| \$7,000,000 | 2.33      | 26.7%          |
| \$8,000,000 | 4.00      | 35.0%          |



The cost of equity for the leveraged firm is:  $k_e = k_o + \frac{D}{E}(k_o - k_d)$ 



Debt to Equity Ratio

What happens if debt is not risk-free at high levels of the D/E ratio?





The beta of equity for the leveraged firm is:  $\beta_e = \beta_o + \frac{D}{E}(\beta_o - \beta_d)$ 



#### MM and Market Imperfections

- Modigliani and Miller's original analysis ignores capital market imperfections including...
  - Corporate and personal taxes
  - Transaction costs
  - Costs associated with financial distress
  - Different cost of borrowing for firms and individuals
  - Changing cost of debt due to changing risk
  - Agency costs
- We focus on the major market imperfections of taxes, financial distress and agency costs



- Corporate taxes
  - Modigliani and Miller extended their previous analysis and dropped the assumption of zero corporate taxes
- Under the classical tax system...
  - As leverage increases, a firm's value will increase because the interest on debt is a tax deductible expense
  - This results in an increase in the after-tax net cash flows to the firm and investors
    - Recall that we assume that all cash flows are paid out as dividends
  - The pie becomes larger!



Example: Consider two firms, U and L, which are identical in terms of their assets and operations but which have different capital structures. Firm U has no debt in its capital structure while firm L is leveraged and has borrowed \$2,000,000 at a cost of debt of 10%. Assume that the debt is permanent, that is, it is "rolled over" when it matures at a cost of 10% forever.

Assume that the earnings generated by the firms are expected to be a constant perpetual stream over time. Also assume that all of the firms' available earnings are paid out as dividends to shareholders, a corporate tax rate of 30% and a classical tax system. The firms' cash flows are shown in the table on the next slide



|                                          | Firm U      | Firm L      |
|------------------------------------------|-------------|-------------|
| EBIT                                     | \$1,000,000 | \$1,000,000 |
| Interest on debt (at 10%)                | \$0         | \$200,000   |
| Earnings before taxes                    | \$1,000,000 | \$800,000   |
| Tax on earnings (at 30%)                 | \$300,000   | \$240,000   |
| Earnings to shareholders                 | \$700,000   | \$560,000   |
| Earnings to shareholders and bondholders | \$700,000   | \$760,000   |

Notes: EBIT = Earnings before interest and taxes

Interest on debt =  $2000000 \times 0.10 = $200,000$  per year

Earnings to shareholders and debtholders = Interest on debt + Earnings to shareholders All cash flows are perpetual and the corporate tax rate is 30%



- The difference in the earnings to shareholders and debtholders is the interest tax shield of \$60,000 which is a perpetual cash flow
  - •Interest on debt =  $D \times k_d = 2000000 \ 0.10 = $200,000$
  - •Interest tax shield =  $t_c \times D \times kd = 0.30(200000) = $60,000$
- •The total value added to the leveraged firm's value is the present value of this tax shield. Since the tax shield is a perpetual cash flow, we have...
  - Present value of tax shield = Tax shield/k<sub>d</sub>
  - Present value of tax shield =  $(t_c \times D \times k_d)/k_d = t_c \times D$
  - Present value of tax shield = 60000/0.10 or 0.30 2000000
  - Present value of tax shield = \$600,000



The value of the leveraged firm,  $V_1$  now is...

$$V_L = V_U + PV$$
 (Tax shield)  
 $V_L = V_U + (t_c \times D \times k_D)/k_D$   
 $VL = V_U + t_c \times D$ 

#### Implication?

- With the introduction of corporate taxes in the MM analysis the existence of debt matters!
- The natural conclusion is that firm should maximize the level of debt in their capital structure as this will maximize the value of the firm
- Does this make sense (especially in the current market environment)?
- What's missing from this analysis?

#### MM with Corporate and Personal Taxes

- Corporate taxes is only part of the "tax picture"
  - •The existence of personal taxes on interest income can reduce the tax advantage associated with debt financing
- Firms save on corporate taxes via the interest tax shield by increasing the debt-to-equity ratio
- However, investors will pay additional personal taxes and will require higher rates of return to compensate them for this and for the higher risk associated with debt
  - Under a classical tax system, the tax advantage of debt at the firm level may be reduced or even eliminated at the shareholder level!



## MM and the Imputation Tax System

- Recall from Lecture 18 that under the imputation tax system...
  - Earnings distributed as franked dividends to resident shareholders is effectively taxed once at the shareholder's (marginal) personal tax rate
  - Interest paid to debtholders is only taxed once at debtholders' personal tax rate
- So, under the imputation tax system there may be tax neutrality between debt and equity
- It is also possible that there is a bias towards those shareholders whose personal tax rates are higher than the corporate tax rate
  - Such shareholders are likely to prefer firms retaining earnings so they can minimize their personal tax burden
- The bottom line?

#### MM and Other Market Imperfections

- There are non-tax factors that can cause a firm's value to depend on its capital structure as well
  - Financial distress and bankruptcy costs
  - Agency costs
- Financial distress is the state where a firm is in breach of its debt obligations, which may not necessarily result in bankruptcy
- Note that the term "bankruptcy" means different things in Australia versus other countries (for example, the US)
  - The term "bankruptcy" is used in a generic sense here
- Note also that the following analysis assumes a classical tax system

#### MM and Other Market Imperfections

- Direct costs of financial distress
  - Fees associated with advisors, lawyers, accountants, etc.
- Indirect costs of financial distress Financial distress leads a range of stakeholders to behave in ways that can disrupt a firm's operations and reduce its value
  - Effect of lost sales
  - Reduced operating efficiency
  - Cost of managerial time devoted to averting failure
- Indirect costs are typically much higher than the direct costs
  - The case of Enron...
  - Direct costs estimated as high as \$500 million
  - Indirect costs in terms of lost market value exceeded \$25 billion

- Agency costs arise from the potential for conflicts of interest between the parties forming the contractual relationships of the firm
- Management may make decisions that transfer wealth from debtholders to shareholders
- The sources of potential conflict are...
  - Dilution of claims
  - Dividend payout
  - Asset substitution
  - Underinvestment



#### Dilution of claims

- A firm may issue new debt which ranks higher than existing debt The claim of old debtholders on the firm's assets now less secure
- New debtholders earn what they're promised so there's a wealth transfer from old debtholders to shareholders

#### Dividend payout

- A firm may significantly increase its dividend payout which decreases the firm's assets and increases the riskiness of its debt
- Wealth transfer from debtholders to shareholders



- Asset substitution
  - A firm's incentive to undertake risky (and even negative NPV) investments increases with the use of debt there is limited ilability associated with equity
  - If risky investments are successful most of the benefits go to shareholders
    - If risky investments fail most of the costs are borne by debtholders
- Undertaking such (negative NPV) investments will result in total firm value falling, but the relative value of equity will rise and the value of the debt will fall
  - Wealth transfer from debtholders to shareholders



#### Underinvestment

- A firm may potentially reject low risk investments even if they are positive NPV investments
- With risky debt, it may not be in the interest of shareholders to contribute additional capital to finance these new (positive NPV) investments
- Although the investments are profitable and will increase firm value, shareholders may still lose because the risk of the debt will fall and its value will increase



# An Optimal Capital Structure

Incorporating the benefits and costs of debt, leads to the following expression of the value of a leveraged firm...

$$V_{\rm L} = V_{\rm U} + {\rm PV}({\rm Tax~shield}) - {\rm PV}({\rm Bankruptcy~costs})$$

- The present value of expected bankruptcy costs depends on the probability of bankruptcy and present value of costs incurred if bankruptcy occurs
- The trade-off theory of capital structure
  - The possibility of a trade-off between the opposing effects of the benefits of debt finance and the costs of financial distress may imply that an optimal capital structure exists
  - Management should aim to maintain a target debt-equity ratio

## An Optimal Capital Structure





## **Key Concepts**

- Modigliani and Miller's proposition 2 states that the expected return on equity of a leveraged firm increases in direct proportion to its debt-toequity ratio
- With corporate taxes, the MM analysis shows that the higher the level of debt the higher the firm's value
- Under the imputation tax system, introducing personal taxes may result in a tax neutrality between debt and equity or even a bias towards those shareholders whose personal tax rates are higher than the corporate tax rate
- Introducing bankruptcy costs and agency costs results in a trade-off between the costs and benefits associated with debt and an optimal capital structure



# Key Relationships/Formula Sheet

- The weighted average cost of capital:  $k_o = \left(\frac{D}{D+E}\right)k_d + \left(\frac{E}{D+E}\right)k_e$
- The cost of equity:  $k_e = k_o + \frac{D}{E} (k_o k_d)$
- The systematic risk of equity:  $\beta_e = \beta_o + \frac{D}{E} (\beta_o \beta_d)$
- Value of the leveraged firm:  $V_L = V_U + t_c \times D$
- Value of the leveraged firm with financial distress:  $V_L = V_U + PV(Tax shield) PV(Bankruptcy costs)$

