Portfolio Management 2010-2011

Question 1

Assume an economy under certainty in which the annualized spot interest rates for investments at 1 and 2 years are the following:

$$
r_{1}=3 \% \quad r_{2}=4 \%
$$

a) Calculate the prices of the 1 and 2 year basic bonds and the forward interest rate f_{2}.
b) Suppose that we observe that a coupon bond is trading in the market at $€$ 103.45. The nominal value of the bond is $€ 100$, the coupon rate is 5% and matures in three years. Is the price of this bond consistent with the absence of arbitrage?
c) Suppose now that there is a 6% coupon bond with 10 years to maturity and a nominal value of $€ 1000$. The yield to maturity is 4%.

1) Compute the Duration.
2) If the interest rate goes up from 4 to 4.1% what is the change in the bond price?
d) What are the limitations of using DURATION as a measure of interest rate sensitivity?

Question 2

Calculate the fair price of a 5% coupon bond maturing in 10 years if the yield is 5%. What is the fair price if the yield is 6% instead and its face value is 100 ? Assume coupons are paid semi-annually.

Question 3

Consider a 4\% coupon bond maturing in 8 years. It is currently trading at 90 with a face value of 100 . What would you do if the yield is 5% ?

Question 4

Consider a 10% coupon selling at par (face value $=100$); coupons are paid semiannually and the yields are 10%. Graph the changes in price for different yields. What do you notice?

Question 5

Assume that there are 2 riskless coupon bonds. Their face values are both equal to $€ 100$ and their maturities are one and two years. Their corresponding coupons are 6% and 10%, respectively, and their market prices are $€ 100.95$ and $€ 101.605$.
a) Compute the prices of the basic bonds 1 and 2 and the spot interest rates for one and two years.
b) What is the yield to maturity (or internal rate of return) of the two-year bond and the forward rate f_{2}.
c) Above you have calculated the implied forward rate f_{2}. Assume that the prevailing forward rate in the market was 15% ? Is there an arbitrage opportunity and if so, how would you take advantage of it? Suppose that you make an investment of $€ 1,000$ for two years.
d) Consider a new bond with maturity of two years, a face value of $€ 1000$ and a coupon of 15%. How much should it cost?
e) Design a way to exploit an arbitrage opportunity if the price of the previous bond was $€ 1000$. (Specify your positions in all three bonds, calculate the immediate profit from the arbitrage, and show that the strategy does not generate any future payments or liabilities).

SOLUTIONS

Question 1

a) $\mathrm{b}_{1}=1 /\left(1+\mathrm{r}_{1}\right)=0,9709 \quad \mathrm{~b}_{2}=1 /\left(1+\mathrm{r}_{2}\right)^{2}=0,9246$
$r_{2}=\left(1+r_{2}\right)^{2}=\left(1+f_{2}\right) \times\left(1+r_{1}\right)$
$\left(1+f_{2}\right)=1.05$
$f_{2}=5 \%$
b)

No arbitrage bond price
$\mathrm{B}^{\mathrm{NA}}=5 /(1.03)+5 /(1.04)^{2}+105 /(1.0416)^{3}=102.39<103.45$, therefore overvalued bond
The market price of the bond is not consistent with no arbitrage.
c)
1)

Calculating DURATION

Time	Payoffs	Present Value	Weights	$\mathrm{T} \times$ Weights
1	60	57.69231	0.04964	0.04964
2	60	55.47337	0.047731	0.095461
3	60	53.33978	0.045895	0.137684
4	60	51.28825	0.04413	0.176519
5	60	49.31563	0.042432	0.212162
6	60	47.41887	0.0408	0.244802
7	60	45.59507	0.039231	0.274618
8	60	43.84141	0.037722	0.301778
9	60	42.1552	0.036271	0.326442
10	1060	716.098	0.616148	6.161478
Totals	1600	1162.218	1	7.980583

Duration: 7.980583 years

2)

Modified Duration: $\mathrm{MD}=\mathrm{D} / 1+\mathrm{YTM}=7.673$
If the interest rate goes up from 4 to 4.1% :
$d B / B=-(D M) d i=-(7.673) \times(0.001)=0.007673=0.7673 \%$

d)

Duration, used as a measure of interest rate sensitivity has limitations. The statistic calculates a linear relationship between price and yield changes in bonds. In reality, the relationship between the changes in price and yield is convex.

Convexity, which is a measure of the curvature of the changes in the price of a bond in relation to changes in interest rates, is used to address this error.

Question 5

Bond 1: $\mathrm{N}=€ 100$, coupon $=6,0 \%, \mathrm{~T}=1, B_{I}=€ 115$
Bond 2: $\mathrm{N}=€ 100$, coupon $=10 \%, \mathrm{~T}=2, B_{2}=€ 110,55$
a) Compute the prices of the basic bonds 1 and 2 and the spot interest rates for one and two years.

	(Price) $\mathrm{t}=0$	$(\mathrm{t}=1)$	$(\mathrm{t}=2)$
Bond 1	100,95	106,00	
Bond 2	110,55	10,00	110,00

Bond $1=106,00$ u. bb1 $\Rightarrow 100,95=106,00 \cdot b_{1} \Rightarrow b_{1}=\frac{100,95}{106,00}=0,9524$
$r_{1}=\frac{1}{0,9524}-1=0,05=5 \%$

Bond $2=15 \mathrm{u} . \mathrm{bb} 1$ and $115 \mathrm{u} . \mathrm{bb} 2$
$\Rightarrow 101,605=10 \cdot b_{1}+110 \cdot b_{2} \Rightarrow b_{2}=\frac{101,605-10 \cdot b_{1}}{110}=\frac{101,605-10 \cdot(0,9524)}{110}=0,8371$
$b_{t}=\frac{1}{\left(1+r_{t}\right)^{t}} \Rightarrow r_{t}=\left(\frac{1}{b_{t}}\right)^{1 / t}-1$

$$
r_{2}=\left(\frac{1}{0,8371}\right)^{1 / 2}-1=0,093=9,3 \%
$$

b) IRR and forward rate

$\operatorname{IRR} \equiv$ annualized effective compounded return rate:

$$
B=\sum_{t=1}^{T} \frac{C_{t}}{(1+i)^{t}}+\frac{N}{(1+i)^{T}}
$$

Therefore, one should calculate i in order to solve the equation,

$$
101,605=\frac{10}{(1+i)}+\frac{110}{(1+i)^{2}}
$$

One can define a "new variable" $X=\frac{1}{(1+i)}$. The new equation to be solved is;

$$
110 X^{2}+10 X-101,605=0
$$

$$
\begin{gathered}
\Rightarrow X=\frac{-10 \pm \sqrt{10^{2}-(4 \times 110 \times(-101,605))}}{2 \times 110}=\frac{-10 \pm 211,6748}{220}=0,9167 \\
\\
X=0,9167=\frac{1}{1+i} \Rightarrow i=\frac{1}{0,9167}-1=9 \% \Rightarrow \text { IRR }=\mathbf{9 , 1 \%}
\end{gathered}
$$

Forward rate

$$
\left(1+r_{t}\right)^{t}=\left(1+r_{t-1}\right)^{t-1}\left(1+f_{t}\right) \Rightarrow\left(1+f_{t}\right)=\frac{\left(1+r_{t}\right)^{t}}{\left(1+r_{t-1}\right)^{t-1}}
$$

f_{2} is given by the following equation:

$$
\left(1+f_{2}\right)=\frac{\left(1+r_{2}\right)^{2}}{\left(1+r_{1}\right)}=\frac{1,093^{2}}{1,05}=1,1378 \Rightarrow f_{2}=13,78 \%
$$

c)

Direct strategy (only spot market) $=$ Invest $€ 1,000$ in bond 2
Payoff at $\mathrm{t}=2: € 1,000 \times\left(1+r_{2}\right)^{2}=€ 1,000 \times(1,093)^{2}=€ 1,194.65$
Indirect Strategy (spot + forward market $)=$ Invest $€ 1,000$ in bond 1 and reinvest that amount at the forward rate.
Payoff at $\mathrm{t}=2: € 1,000 \times\left(1+r_{1}\right) \times\left(1+f_{2}\right)=€ 1,000 \times 1,05 \times 1,15=€ 1,207.5$
Or,

$$
\left(1+f_{2}\right) \neq \frac{\left(1+r_{2}\right)^{2}}{\left(1+r_{1}\right)} \Leftrightarrow 1,15 \neq \frac{1,093^{2}}{1,05} \Leftrightarrow 1,15 \neq 1,1378
$$

Obviously, there exists arbitrage

Arbitrage strategy:

Borrow $€ 1000$ for two years at 9.3%
Invest $€ 1000$ for one year, and invest the proceeds at the one year forward rate one year hence.

Direct Strategy		
$\mathrm{t}=0$	$\mathrm{t}=1$	$\mathrm{t}=2$
$€ 1000$		$€-1.194,65$
$€ 1000$	Indirect Strategy	
	$€ 1.050,00$	$€ 1.207,50$

Arbitrage Profit: $€ 1.207,50-€ 1.194,65=€ 12,85$
d) New bond price

Bond 3: $\mathrm{N}=€ 1000$, coupon $=15 \%, \mathrm{~T}=2$.
Bond $3=$ portfolio 150 bb 1 and 1150 bb 2
Bond $3=150 b 1+1150 b 2=150(0.9524)+1150(0.8371)=€ 1105,53$

e) Arbitrage Opportunities

If the bond's market price was $€ 1000$ arbitrage opportunities will exist since the price of the previous bond is not coincident with the no-arbitrage price, $€ 1105.53$. The arbitrage strategy will consist in long bond 3 and short a replicate portfolio of bonds 1 and 2 .

How will found the replicated portfolio? Solving the following equation system:

$$
\left\{\begin{array}{l}
150=106 \cdot n_{1}+10 \cdot n_{2} \\
1150=0 \cdot n_{1}+110 \cdot n_{2}
\end{array}\right.
$$

The solution is: $n_{1}=0,43 ; n_{2}=10,45$. To replicate Bond 3 we should buy (long position) 0,43 units of bond 1 and 10,45 units of bond 2 . We will define this new portfolio as Z .

Therefore, the arbitrage strategy will be:

- Long one unit of Bond 3
- \quad Short (sell) one unit of portfolio $\mathrm{Z}=\left(n_{1}, n_{2}\right)$

	$\mathrm{t}=0$	$\mathrm{t}=1$	$\mathrm{t}=2$
Long Position Bond 3	$-1000,00$	+150	+1150
Short Position Portfolio Z			
- short 0,43 units bond 1	43,4	$-45,5$	0
- short 10,45 units bond 2	1155.2	$-104,5$	-1150
TOTAL	$+198,66$	0	0

