Question 1

Choice "c" is correct. All other things being equal, longer maturity bonds have greater duration than shorter maturity bonds, and lower coupon bonds have greater duration than higher coupon bonds. Greater duration means greater bond price volatility when interest rates change. Bond "c" has the combination of the longer maturity and lower coupon.

Choice " a " is incorrect. Since bond " c " has lower coupon than bond " a ", bond " c " will have greater volatility.
Choice " b ' is incorrect. Since bond " c " has a longer maturity than bond " b ", bond " c " will have greater volatility.
Choice " d " is incorrect. Since bond " c " has longer maturity and lower coupon than bond " d ", bond " c " will have greater volatility.

Question 2

Pricing the 180 day T-bill
Interest rate factor $=(n / 365) \times r=(180 / 365) \times 0.06=2.959 \%$
Price $=100,000 /[1+0.02959]=\$ 97,126.13$
Pricing the 90 day T-bill
Price $=100,000 /[1+(90 / 365) \times 0.06]=\$ 98,542.12$

Price approaches the face value as bill approaches maturity.

Question 3

Given: $P_{n}=\$ 1,000, n=5$ years, and $k_{d}=Y T M=8 \%$
a) $P_{0}=1000 / 1.085=\$ 680.58$
b) The price has risen so you'd expect the YTM to be lower

New price, $\mathrm{P}_{0}=700=1000 /\left(1+\mathrm{k}_{\mathrm{d}}{ }^{*}\right) 5$
$k_{d}{ }^{*}=(1000 / 700) 1 / 5-1=7.39 \%$ or 7.4%
Note: Prices and yields are inversely related

Question 4

Given: Coupon rate $=10 \%, n=5$ years, $P_{n}=\$ 1,000, k_{d}=8 \%$
a) $P_{0}=100[(1-1.08-5) / 0.08]+1000 / 1.085$
$P_{0}=399.27+680.58=\$ 1079.85$
The bond is selling at a premium of $\$ 79.85$ (= 1079.85-1000) above face value because YTM < Coupon rate promised
b) $\mathrm{P}_{4}=(100+1000) / 1.08=\$ 1018.52$

Note: Price does not include the coupon paid in that year
c) Price immediately before maturity?
d) Price of a zero coupon bond, $P_{0}=1000 / 1.085=\$ 680.58$

Question 5

Both bonds are currently selling at par (why?)
Price of bonds A and B
$P_{0}{ }^{A}=100\left[\left(1-\left(1+k_{d}\right)^{-2}\right) / k_{d}\right]+1000 /\left(1+k_{d}\right)^{2}$
$P_{0}{ }^{B}=100\left[\left(1-\left(1+k_{d}\right)^{-20}\right) / k_{d}\right]+1000 /\left(1+k_{d}\right)^{20}$
Effect of market interest rate changes on prices
$\begin{array}{llc}\text { 6\%: } & P_{0}{ }^{A}=\$ 1073.34(+7.33 \%) & P_{0}{ }^{B}=\$ 1458.80(+45.88 \%) \\ \text { 8\%: } & P_{0}{ }^{A}=\$ 1035.67(+3.57 \%) & P_{0}{ }^{B}=\$ 1196.36(+19.63 \%) \\ 12 \%: & P_{0}{ }^{A}=\$ 966.20(-3.38 \%) & P_{0}{ }^{B}=\$ 850.61(-14.94 \%) \\ 14 \%: & P_{0}{ }^{A}=\$ 934.13(-6.59 \%) & P_{0}{ }^{B}=\$ 735.07(-26.49 \%)\end{array}$

Question 6

Given: $P_{t+1}=\$ 5.00, D_{t+1}=\$ 0.50$ and $k_{e}=10 \%$

$$
P_{t}=\frac{0.50+5.00}{1+0.10}=\$ 5.00
$$

If the current price changes to $\$ 4.80$, the expected return rises to

$$
k_{e}=\frac{0.50+5.00}{4.80}-1=14.6 \%
$$

Note that prices and expected returns are inversely related

Question 7

Given: $D_{1}=0.26, g=0.05$ and $\mathrm{ke}=0.10$
a) $P_{0}=0.26 /(0.10-0.05)=\$ 5.20$
b) $P_{1}=D 2 /(k e-g)=0.26(1.05) /(0.10-0.05)=\$ 5.46$ (a 5% rise)
c) $k e=D_{1} / P_{0}+g$ or $g=k e-D_{1} / P_{0}$
$g=0.10-0.26 / 4.75=0.0453$ or 4.5%
d) Sensitivity of Telstra's price to changes in expectations of g
$\mathrm{g}=3 \%: \mathrm{P}_{0}=0.26 /(0.10-0.03)=\$ 3.71(-28.7 \%)$
$\mathrm{g}=4 \%: \mathrm{P}_{0}=0.26 /(0.10-0.04)=\$ 4.33(-16.7 \%)$
$\mathrm{g}=5 \%: \mathrm{P}_{0}=0.26 /(0.10-0.05)=\$ 5.20$
$g=6 \%: P_{0}=0.26 /(0.10-0.06)=\$ 6.50(+25.0 \%)$
$g=7 \%: P_{0}=0.26 /(0.10-0.07)=\$ 8.67(+66.7 \%)$
e) Sensitivity of Telstra's price to changes in ke

```
ke = 8%: P}\mp@subsup{P}{0}{}=0.26/(0.08-0.05)=$8.67 (+66.7%
ke = 9%: Po 0.26/(0.09-0.05) = $6.50 (+25.0%)
ke = 10%: P}\mp@subsup{P}{0}{}=0.26/(0.10-0.05)=$5.2
ke = 11%: P}\mp@subsup{P}{0}{}=0.26/(0.11-0.05)=$4.33 (-16.7%
ke = 12%: P0 = 0.26/(0.12-0.05) = $3.71 (-28.7%)
```


Question 8

a) Payout ratio, $\alpha=0.758$ and growth in dividends, $g=5 \%$

$$
P_{0}=\frac{\alpha E_{1}}{k_{e}-g}=\frac{0.758 \times 0.343}{0.10-0.05}=\$ 5.20
$$

b) P / E ratio $=5.20 / 0.343=15.2$

Question 9

FALSE. The percent price decline for longer maturity bond will be higher than for the shorter maturity bond, all else being the same.

Question 10

Par $=1000 \quad C=5 \% \quad t=7 \quad m=2$
$c=C / m=2.5 \%$
$n=t \times m=14$
$R=6 \%$
$i=R / m=3 \%$
$Z=1 /(1+0.03)=0.9709$
$Z _14=0.9709^{14}=0.6612$
$A _14=(1-0.6612) / 0.03=11.2961$

Annuity value $=11.2961 \times 0.025 \times 1000=\$ 282.40$
Principal Value $=0.6612 \times 1000=\$ 661.12$
Bond Value $=\$ 282.40+\$ 661.2=\$ 943.52$

Question 11

Here only the principal repayment matters
$Z _14(r=6 \%) \times 1000=\$ 661.12$
Note that this has to be the same as the calculation of the principal value in Question 16

Question 12

As a bond approaches maturity its price approaches the bond's par value.

Question 13

Dividend Last year was $£ 2 \mathrm{~m} / 3 \mathrm{~m}=£ 0.67$
Next years dividend is $£ 0.67^{*}(1.1)=£ 0.74$
Year After $£ 0.74^{*}(1.07)=£ 0.79$
Year After $£ 0.79 *(1.06)=0.84$
Year After $£ 0.84^{*}(1.03)=0.87$

$$
P V=£ 0.74 /(1+r)+£ 0.79 /(1+r)^{\wedge} 2+0.84 /(1+r)^{\wedge} 3+0.87 /(r-0.03)(1+r)^{\wedge} 3
$$

With $r=15 \%$

$$
P V=£ 0.74 /(1.15)+£ 0.79 /(1.15)^{\wedge} 2+0.84 /(1.15)^{\wedge} 3+0.87 /(0.15-0.03)\left(1.15^{\wedge} 3\right)
$$

```
= 0.6435 +0.5974 +0.5523 + 4.7670
=6.5602
```


Question 14

a) There will be a increasing in the stable growth rate; the discount rate will also go up.
b) The stable growth rate will be higher, if the economy is growing faster.
c) The stable growth rate will not be affected, but the high growth period for this company will be longer.
d) Again the stable growth rate will be unaffected, but the high growth period and growth rate will be higher.

Question 15

All other factors constant, the longer the maturity, the greater the price change when interest rates change. So, Bond B is the answer.

Question 16

Quoted Price	Price per $\$ 1$ of par value	Par value	Dollar price
$961 / 4$	0.9625	$\$ 1,000$	962.50
$1027 / 8$	1.0288	$\$ 5,000$	$5,143.75$
$1099 / 16$	1.0956	$\$ 10.000$	$10,956.25$
$6811 / 32$	0.6834	$\$ 100,000$	$68,343.75$

Question 17

Correct answer: C. You would prefer the prize with the highest present value. The present value of each payment option is as follow:

Prize B: $250000 \times \frac{1-(1+0.08)^{-5}}{0.08}=\$ 998,178$
Prize C: $\frac{1500000}{(1.08)^{5}}=\$ 1,020,875$
Prize D: $\frac{500000}{(1.08)^{1}}+\frac{600000}{(1.08)^{2}}=\$ 977,36$

Question 18

Correct answer: B. We need to compute an annuity whose future value is $\$ 50,000$ usning the following future value of an annuity expression
$F n=C \times \frac{(1+r / m)^{n \times m}-1}{r / m} \Leftrightarrow 50,000=C \times \frac{(1+0.08 / 1)^{5 \times 1}-1}{0.08 / 1}$
$C=50000 /\left[\frac{(1+0.08 / 1)^{5 \times 1}}{0.08 / 1}\right]=\$ 8,522.82$

```
Revision Pack 1

\section*{Question 19}

Correct answer: D. We first need the effective annual interest rate as the stated rate is compounded quarterly but the cash flows occur annually. The effective annual interest rate is:
\[
\left(1+\frac{0.08}{4}\right)^{4}-1=8.2432 \%
\]

We next the future value of an annuity earning a compounded return of \(8.2432 \%\) per annum at the end of 5 years, which is:
\[
F_{n}=A \times \frac{(1+r)^{n}-1}{r}=10000 \times \frac{(1+0.082432)^{5}-1}{0.082432}=\$ 58,951.19
\]

\section*{Question 20}

Correct answer: C. The annual payment C on the ten-year loan with an interest rate of \(12 \%\) and monthly compounding is;
\[
250000=C \times \frac{1-(1+r / m)^{-n \times m}}{r / m} \Leftrightarrow 250000=C \times \frac{1-(1+0.12 / 12)^{-10 \times 12}}{0.12 / 12}
\]
\[
C=250000 /\left(\frac{1-(1+0.12 / 12)^{-10 \times 12}}{0.12 / 12}\right)
\]
\[
C=250000 / 69.7005=\$ 3,586.77
\]

\section*{Question 21}

Correct answer: B. The annual payment C on the ten-year loan with an interest rate of \(12 \%\) and monthly compounding was computed as \(\$ 3,586.77\) in the previous question. Since there are four years remaining on the loan, the principal outstanding \(P\) now is:
\[
P=3,586.77 \times \frac{1-(1+0.12 / 12)^{-4 \times 12}}{0.12 / 12}=\$ 136,204
\]

\section*{Question 22}

Correct answer: D. The effective annual interest rate on this loan is:
\(\left(1+\frac{0.12}{12}\right)^{12}-1=12.68 \%\)

\section*{Question 23}

Correct answer: C. Based on the current dividend yield and market price we can get the current dividend per share as:

\section*{Revision Pack 1}

Current dividend per share \(=0.04(15.00)=\$ 0.60\)

A retention ratio of \(60 \%\) implies a payout ratio of: 1-0.60 \(=40 \%\)

This implies that the earnings per share of the firm is: \(0.60 / 0.40=\$ 1.50\)

So, the \(P / E\) ratio \(=15.00 / 1.50=10.0\)

\section*{Question 24}

Correct answer: B. the information given is \(D_{5}=\$ 1.00, g=5 \%, K_{e}=15 \%\)
\(P_{4}=D_{5} /\left(k_{e}-g\right)=1.00 /(0.15-0.05)=\$ 10.00\)
So, \(P_{0}=P_{4} /\left(1+K_{e}\right)^{4}=10.00 / 1.15^{4}=\$ 5.72\)

\section*{Question 25}

Correct answer: A. This is an efficient portfolio with a standard deviation that is half that of the market portfolio since the portfolio's standard deviation is \(\sigma_{p}=W_{m} \sigma_{m}\) where \(W_{m}=0.5\). It will lie to the left of the market portfolio on the CML as we are lending half of our funds at the riskfree rate and investing the remaining funds in the market portfolio. So statement III is true and I and II are false.

\section*{Question 26}

Correct answer: A. You need to think through the problem. Right now the yield to maturity is \(10 \%\) (why?). the yield to maturity on the bonds has to be \(10 \%\) if they are selling at par and the deferred coupons are being 'reinvested" (that is the penalty of \(10 \%\) p.a.) at the firm's promised (coupon) rate which equals the yield to maturity right now. One can compute the cash flows and show this to be the case but that is not really required. That is:
\(P 0=1000=1000+\left[100(1.10)^{3}+100(1.10)^{2}+100(1.10)+100\right] /(1+r)^{4}\)

Note that the cash flows in the square brackets above are what the firm has to pay (coupon plus the penalty paid by the firm on each coupon) at the end of year 4 . Solving for \(r\) gives a rate of return of \(10 \%\).

\section*{Question 27}

Correct answer: B. An expected return on the portfolio of \(10 \%\) implies the following weights in securities \(B\left(W_{B}\right)\) and \(C\left(W_{c}\right)\).
\(E\left(r_{p}\right)=0.50(0.08)+W_{B}(0.10)+\left(0.5-W_{B}\right)(0.15)\)

So, \(W_{B}=0.30\) and \(W_{C}=0.20\)
\(\sigma_{p}^{2}=0.5^{2}(0.040)+0.3^{2}(0.250)+0.2^{2}(0.090)+2(0.5)(0.3)(0.015)+2(0.5)(0.2)(0.030)+2(0.3)(0.2)\) (0.060)
\(\sigma_{p}{ }^{2}=0.0538\)

\section*{Question 28}

Correct answer: D. All three expressions are correct. The first expression uses the covariance formula. The second expression uses the correlation formula (where the correlation is +1.0 ). The third expression also uses the correlation formula and simplifies the second expression.

\section*{Question 29}

Correct answer: D. The return distribution for the stock is as follow.
\begin{tabular}{|c|c|c|c|}
\hline State of the Economy & Probability & Total Cash Flows & Rate of return \\
\hline Boom & 0.25 & \(\$ 8.00\) & \(60.0 \%\) \\
\hline Normal & 0.50 & \(\$ 7.00\) & \(40.0 \%\) \\
\hline Recession & 0.25 & \(\$ 4.00\) & \(-20.0 \%\) \\
\hline
\end{tabular}

The rates of return are computed \(\left(P_{t}+D_{t}+P_{t-1}\right) / P_{t-1}\)
\(E(r)=0.25(0.60)+0.50(0.40)+0.25(-0.20)=30 \%\)
\(\sigma_{P}^{2}=0.25(0.60-0.30)^{2}+0.50(0.40-0.30)^{2}+0.25(-0.20-0.30)^{2}=0.09\)

So, \(\sigma_{P}=0.09^{1 / 2}=30 \%\)```

